

8-bit
Microcontrollers

Application Note

Rev. 8058A-AVR-02/08

AVR1312: Using the XMEGA External Bus
Interface

Features
• Supports SRAM, SDRAM and addressable peripherals
• Up to 16 MB address space
• Four independent Chip Select lines
• 1, 2, 3 or 4 ports used for Address and Data lines
• SDRAM features:

 Automatic refresh
 4- or 8-bit data

• Driver source code included

1 Introduction
The XMEGA™ External Bus Interface (EBI) is a highly flexible module for
interfacing external memories and memory addressable peripherals such as LCD
controllers and advanced communication controllers. The EBI module has four
separate Chip Select blocks with individual address ranges and wait state control.
Additional Chip Select lines can be decoded externally.

Flexible settings for address multiplexing and external latches, individual settings
for the four Chip Select blocks and transparent support for SDRAM with automatic
refresh make this module the perfect match for all applications using external
memories and addressable peripherals.

This application note describes the basic functionality of the XMEGA EBI with code
examples to get up and running quickly. A driver interface written in C is included
as well.

Figure 1-1. Module Overview

XMEGA Address Bus

XMEGA Data Bus

External Bus Interface

Address
Range 0

Address
Range 1

Address
Range 2

Address
Range 3

SRAM SRAM

SRAMSDRAM
or SRAM

Address
Latches

External Address,
Data and Control Bus

I/O
 p

or
ts

Chip Select 0

Chip Select 1 Chip Select 2

Chip Select 3

2 AVR1312

2 Module Overview
This section provides an overview of the functionality and basic configuration options
of the EBI. Section 3 then walks you through the basic steps to get you up and
running, with register descriptions and configuration details.

2.1 Connecting Memories and Peripherals
The EBI module can be configured to use two, three or four I/O-ports for interfacing
external memories and peripherals. The ports used are shown in Table 2-1 below.
The following sections describe how to connect to the ports for the different modes.

Table 2-1. EBI Port Mode
Mode Ports Used by EBI Module

Two-port operation Port H and J

Three-port operation Port H, J, and K

Four-port operation Port H, J, K, and L

2.1.1 Two-port Interface

The two-port mode only allows for SRAM LPC (Low Pin Count) operation. SRAM LPC
usually involves SRAM devices with internal latches. However, ordinary SRAM
devices can be used with external latches.

With SRAM LPC, Port J is used for address and data, while Port H is used for control
signals. The connections are shown in Figure 2-1 below.

The LPC Mode bitfield (LPCMODE) in the EBI Control register (CTRL) selects whether
ALE2 should be used or not. Enabling ALE2 means that 16-bit addresses are used.

Figure 2-1. 8- and 16-bit address bus in two-port SRAM LPC mode
SR

A
M

 /
Pe

rip
he

ra
l

EB
I

Po
rt

 H
Po

rt
 J Latch

Latch

D
at

a
A

dd
re

ss
C

on
tr

ol

D[7..0]

A[7..0]

A[15..8]

ALE1
ALE2

~RE / ~WE / ~CSn

2.1.2 Three-port Interface

The three-port mode allows for ordinary SRAM and SDRAM connections in addition
to SRAM LPC. SRAM and SRAM LPC can be used together, but SDRAM can only be
used alone in three-port mode. In order to use SDRAM together with other memory
types, the EBI module must be in four-port mode.

8058A-AVR-02/08

 AVR1312

2.1.2.1 Three-port SRAM LPC

For SRAM LPC, the connections are similar to two-port mode with the addition of Port
K used for bit 8 to 15 of the address. The connections for three-port SRAM LPC are
shown in Figure 2-2 below.

If the ALE2 line is enabled with the LPC Mode bitfield (LPCMODE), Port K is not used
and the connections are equal to two-port SRAM LPC, as shown in Figure 2-1 above.

Figure 2-2. 16-bit address bus in three-port SRAM LPC mode

SR
A

M
 /

Pe
rip

he
ra

l

EB
I

Po
rt

 H
Po

rt
 J

D
at

a
A

dd
re

ss
C

on
tr

ol

Po
rt

 K

~RE / ~WE / ~CSn

Latch

D[7..0]

A[7..0]

A[15..8]

ALE1

Note that three-port SRAM LPC with only ALE1 enabled is similar to the XRAM
interface available on many devices in the megaAVR® family.

2.1.2.2 Three-port SRAM

Instead of multiplexing address and data on one I/O port as in SRAM LPC mode,
ordinary SRAM mode uses one dedicated port for data lines and one or more ports
for multiplexing address lines. For three-port SRAM mode, Port H is used for control
signals as usual, Port J is used for data only, and Port K is used for multiplexing
address lines.

The SRAM Mode bitfield (SRMODE) in the EBI Control register (CTRL) select whether
ALE2 should be used or not. Enabling ALE2 means that 24-bit addresses are used.

 3

8058A-AVR-02/08

4 AVR1312

Figure 2-3. 16- and 24-bit address bus in three-port SRAM mode

SR
A

M
 /

Pe
rip

he
ra

l

EB
I

Po
rt

 H
Po

rt
 J

Latch

D
at

a
A

dd
re

ss
C

on
tr

ol

Po
rt

 K

Latch

ALE1

~RE / ~WE / ~CSn

ALE2

D[7..0]

A[7..0]

A[15..8]

A[23..15]

2.1.2.3 Three-port SDRAM

When SDRAM is enabled in three-port mode, neither SRAM nor SRAM LPC is
supported. There are no spare pins for the Chip Select control signals on the EBI
ports.

The SDRAM Data Width bitfield (SDDATAW) in the EBI Control register (CTRL) selects
between 4-bit and 8-bit SDRAM data width, however only 4-bit SDRAM data width is
supported in three-port mode.

The connections for SDRAM in three-port mode are shown in Figure 2-4 below.

Figure 2-4. Four-bit SDRAM with three-port configuration

SD
R

A
M

EB
I

Po
rt

 H
Po

rt
 J

D
at

a
A

dd
re

ss
C

on
tr

ol

Po
rt

 K

SDRAM Control Signals

D[3..0]

A[7..0]

A[11..8]

2.1.3 Four-port Interface

The four-port mode allows for 8-bit SDRAM operation and SDRAM together with
SRAM and SRAM LPC. Of course, SRAM and SRAM LPC operation without SDRAM
is also supported in four-port mode.

Note that the connections for SRAM LPC and SRAM are slightly different if SDRAM is
enabled.

2.1.3.1 Four-port SRAM LPC

For SRAM LPC, the connections are similar to three-port mode. SRAM LPC does not
make use of the fourth port.

8058A-AVR-02/08

 AVR1312

2.1.3.2 Four-port SRAM

Compared to three-port SRAM operation, four-port SRAM removes the need for the
ALE1 line. Instead, the second byte of the address is moved to the fourth port, Port L.
If only 16-bit addresses are used, there is no need for an address latch. However, the
ALE2 line can be used to multiplex the third address byte on Port K, similar to three-
port operation.

The connections, with optional use of ALE2, are shown in Figure 2-5 below. What is
not shown in the figure is that if the ALE2 line is not used, address lines A16 and A17
are available from Port H. This allows for 18-bit addressing without using latches.

Figure 2-5. 16- and 24-bit address bus in four-port SRAM mode

SR
A

M
 /

Pe
rip

he
ra

l

EB
I

Po
rt

 H
Po

rt
 J

Latch

D
at

a
A

dd
re

ss
C

on
tr

ol

Po
rt

 K

~RE / ~WE / ~CSn

ALE2

D[7..0]

A[7..0]

A[15..8]

A[23..15]

Po
rt

 L

2.1.3.3 Four-port SDRAM

Compared to three-port SDRAM operation, four-port SDRAM supports simultaneous
operation of SRAM and SRAM LPC. When configured in four-port SDRAM mode, the
EBI interface places the Chip Select lines on the upper four bits of Port L.

The connections for eight-bit SDRAM are shown in Figure 2-6 below. Compared to
four-bit SDRAM, Port J now holds all eight bits of data while the upper four address
bits are moved to Port L together with the Chip Select lines.

 5

8058A-AVR-02/08

6 AVR1312

Figure 2-6. 8-bit SDRAM with four-port configuration

SD
R

A
M

EB
I

Po
rt

 H
Po

rt
 J

D
at

a
A

dd
re

ss
C

on
tr

ol

Po
rt

 K

SDRAM Control Signals

D[7..0]

A[7..0]

A[11..8]

Po
rt

 L ~CSn

If SRAM and SRAM LPC is used together with SDRAM, consider that address lines
A16 to A19 are moved to the lower four bits of Port L. This applies to all SRAM and
SRAM LPC configurations that share address lines A16 to A19 with the Chip Select
lines. Refer to Section 4.1 below for details.

Note that four-port SRAM is not supported when SDRAM is used.

2.2 The Chip Select Blocks
The EBI module has four Chip Select lines (CS0 to CS3) that can be associated with
separate address ranges. The control registers and functionality associated with each
Chip Select line are logically grouped into Chip Select Blocks. The four Chip Select
Blocks are shown in Figure 1-1 on page 1.

Depending on the memory types you are connecting to the EBI, the Chip Select
Blocks can be configured for SRAM LPC (Low Pin Count), ordinary SRAM or
SDRAM. The blocks can be configured independently, but only the CS3 block
supports SDRAM.

The base address associated with each Chip Select Block must be on a 4 Kbyte
boundary, and decides the location in data memory space where the connected
memory hardware can be accessed. The Base Address register (BASEADDR) of each
Chip Select Block holds this address.

The size of the memory space for each Chip Select Block is selected by the Address
Space bitfield (ASPACE) in Control Register A (CTRLA). The size can be from 256
bytes up to 16M bytes.

Note that if the address space is set to anything larger than 4K bytes, the base
address must be on a boundary equal to the address space. For instance, with
1 Mbyte address space for a Chip Select Block, the base address must be on a
1 Mbyte boundary.

If the address spaces overlap, the internal memory spaces have priority, followed by
CS0, CS1, CS2 and then CS3 with least priority.

8058A-AVR-02/08

 AVR1312

 7

8058A-AVR-02/08

2.3 I/O-port configuration
The EBI module does not override I/O-port directions when enabled. The user must
configure all interface pins as outputs, except the pins used for the data bus.

Control signals that are active-low, the pin output value should be set to logic one,
while active-high signals should have the corresponding pin output value set to logic
zero. Address lines do not care whether the output value is one or zero.

Chip Select lines should have pull-up resistors to ensure that these are kept high
during start-up. This ensures that floating control signals during start-up are ignored
by external modules. In modes where Chip Select lines are not controlled by the EBI
module (e.g. 3-port SDRAM), General Purpose IO pins should be used to set the
Chip Select lines low when needed.

For more information, please refer to the device datasheet or the application note
“AVR1313: Using the XMEGA I/O-pins and External Interrupts”.

2.4 Selecting External Latches
The EBI module was designed to meet the spec for 74AHC series of address latches.
Refer to datasheet for details for timing requirements.

2.5 SDRAM Refresh Considerations
The EBI takes care of refreshing the SDRAM module for us. Since the only Chip
Select block capable of interfacing SDRAM have the lowest priority, it could happen
that other memories are being accessed when its time for a new SDRAM refresh. In
that case, the EBI remembers the missed refresh and refreshes the SDRAM when
other memory accesses are finished.

When in sleep mode and the clock to the EBI module is stopped, it is possible to
enter Self-refresh mode for the SDRAM module. To enable Self-refresh, set the
SDRAM Self-refresh Enable bit (SDSREN) in Control Register B (CTRLB) for Chip
Select block 3. Note that it is not possible to access the SDRAM when in Self-refresh
mode.

3 Getting Started
This section walks you through the basic steps for getting up and running with the
XMEGA EBI. The necessary registers are described along with relevant bit settings.

Setting up the EBI for SRAM and SDRAM operation is an easy task, and the reader is
advised to study the code example for details. SDRAM setup requires some more
though, and a walkthrough is provided below.

3.1 SDRAM Setup and Initialization
Task: Setup EBI for SDRAM operation and initialize SDRAM controller.

• Select three-port or four-port interface with the Interface Mode bitfield (IFMODE) in
the EBI Control register (CTRL).

• Configure IO-port directions and values according to Section 2.3 above.
• Use the SDRAM Data Width bitfield (SDDATAW) in the EBI Control register (CTRL)

to select 4-bit or 8-bit data.

8 AVR1312

• Use the SDRAM CAS Latency bit (SDCAS) in SDRAM Control Register A
(SDRAMCTRLA) to select 2 cycles (logic zero) or 3 cycles (logic one) CAS latency.

• Use the SDRAM Row Bits bit (SDROW) in SDRAM Control Register A
(SDRAMCTRLA) to select 11-bit (logic zero) or 12-bit (logic one) row addressing.

• Use the SDRAM Column Bits bitfield (SDCOL) in SDRAM Control Register A
(SDRAMCTRLA) to select 8-, 9-, 10- or 11-bit column addressing.

• Use the bitfields MRDLY, ROWCYCDLY and RPDLY bitfields in SDRAM Control
Register B (SDRAMCTRLB) and WRDLY, ESRDLY and ROWCOLDLY in SDRAM
Control Register C (SDRAMCTRLC) to configure various SDRAM interface delays
given in peripheral clock cycles.

• Use the SDRAM Refresh Period register (REFRESH) to select SDRAM refresh
period in peripheral clock cycles.

• Use the SDRAM Initialization Delay register (INITDLY) to select SDRAM
initialization delay in peripheral clock cycles.

• Set the desired SDRAM base address in the Base Address register (BASEADDR)
for Chip Select Block 3.

• Set the desired address space using the Address Space bitfield in Control
Register A (CTRLA) for Chip Select Block 3.

• Enable SDRAM and start initialization sequence by setting the Memory Mode
bitfield (MODE) to SDRAM in Control Register A (CTRLA) for Chip Select Block 3.

When initializing SDRAM, it is important to configure all parameters before enabling
the Chip Select Block in SDRAM mode. The order of setting the parameters
themselves are not important.

4 Advanced Features
This section introduces more advanced features and possibilities with the EBI. In-
depth treatment is outside the scope of this application note and the user is advised
to study the device datasheet and relevant application notes.

4.1 Chip Select Lines as Address Lines
In certain configurations, the Chip Select lines can be used as address lines instead.
Say, if only Chip Select Block 2 and 3 is used, the Chip Select lines CS0 and CS1 are
used as address lines A16 and A17 instead. Figure 4-1 below shows the possible
configurations.

This feature only applies to configuration where address lines A16 to A19 are not
already multiplexed on other ports.

Figure 4-1. Possible combinations of Chip Select lines and address lines
CS3

CS2

CS1

CS0

CS3

CS2

CS1

A16

CS3

CS2

A17

A16

A19

A18

A17

A16

The figure shows that if only CS3 is enabled, all four CS lines are used as address
lines.

8058A-AVR-02/08

 AVR1312

4.2 Additional Chip Select Lines
If the four Chip Select lines should not be enough for your application, further address
decoding can be done externally.

Say you want to access eight small external peripheral devices, all having 32 internal
registers or less. Configure the Chip Select Block you want to use with 256-byte
address space. The resulting 8-bit address is divided into two parts, the upper three
bits selects one of the eight external peripherals, while the lower five bits addresses
one out of 32 internal registers. Figure 4-2 below shows an example for such an
implementation.

Figure 4-2. Example of three address bits decoded to eight external Chip Select lines

3-to-8
decoder

Chip Select

A[7..0]

A[7..5]

A[4..0]

Enable

External
peripheral 0

External
peripheral 1

External
peripheral 7

5 Driver Implementation
This application note includes a source code package with a basic EBI driver
implemented in C. It is written for the IAR Embedded Workbench® compiler.

Note that this EBI driver is not intended for use with high-performance code. It is
designed as a library to get started with the EBI. For timing and code space critical
application development, you should access the EBI registers directly. Please refer to
the driver source code and device datasheet for more details.

5.1 Files
The source code package consists of four files:

• ebi_driver.c – EBI driver source file
• ebi_driver.h – EBI driver header file
• ebi_sram_example.c – Example code using the driver with SRAM
 ebi_sdram_example.c – Example code using the driver with SDRAM

For a complete overview of the available driver interface functions and their use,
please refer to the source code documentation.

5.2 Doxygen Documentation
All source code is prepared for automatic documentation generation using Doxygen.
Doxygen is a tool for generating documentation from source code by analyzing the
source code and using special keywords. For more details about Doxygen please visit
http://sourceforge.net/projects/doxygen. Precompiled Doxygen documentation is also
supplied with the source code accompanying this application note, available from the
readme.html file in the source code folder.

 9

8058A-AVR-02/08

http://sourceforge.net/projects/doxygen

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others, are the registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

8058A-AVR-02/08

	1 Introduction
	2 Module Overview
	2.1 Connecting Memories and Peripherals
	2.1.1 Two-port Interface
	2.1.2 Three-port Interface
	2.1.2.1 Three-port SRAM LPC
	2.1.2.2 Three-port SRAM
	2.1.2.3 Three-port SDRAM

	2.1.3 Four-port Interface
	2.1.3.1 Four-port SRAM LPC
	2.1.3.2 Four-port SRAM
	2.1.3.3 Four-port SDRAM

	2.2 The Chip Select Blocks
	2.3 I/O-port configuration
	2.4 Selecting External Latches
	2.5 SDRAM Refresh Considerations

	3 Getting Started
	3.1 SDRAM Setup and Initialization

	4 Advanced Features
	4.1 Chip Select Lines as Address Lines
	4.2 Additional Chip Select Lines

	5 Driver Implementation
	5.1 Files
	5.2 Doxygen Documentation

