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AVR1312: Using the XMEGA External Bus 
Interface 

Features 
• Supports SRAM, SDRAM and addressable peripherals 
• Up to 16 MB address space 
• Four independent Chip Select lines 
• 1, 2, 3 or 4 ports used for Address and Data lines 
• SDRAM features: 

 Automatic refresh 
 4- or 8-bit data 

• Driver source code included 

1 Introduction 
The XMEGA™ External Bus Interface (EBI) is a highly flexible module for 
interfacing external memories and memory addressable peripherals such as LCD 
controllers and advanced communication controllers. The EBI module has four 
separate Chip Select blocks with individual address ranges and wait state control. 
Additional Chip Select lines can be decoded externally. 

Flexible settings for address multiplexing and external latches, individual settings 
for the four Chip Select blocks and transparent support for SDRAM with automatic 
refresh make this module the perfect match for all applications using external 
memories and addressable peripherals. 

This application note describes the basic functionality of the XMEGA EBI with code 
examples to get up and running quickly. A driver interface written in C is included 
as well. 

Figure 1-1. Module Overview 
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2 Module Overview 
This section provides an overview of the functionality and basic configuration options 
of the EBI. Section 3 then walks you through the basic steps to get you up and 
running, with register descriptions and configuration details. 

2.1 Connecting Memories and Peripherals 
The EBI module can be configured to use two, three or four I/O-ports for interfacing 
external memories and peripherals. The ports used are shown in Table 2-1 below. 
The following sections describe how to connect to the ports for the different modes. 

Table 2-1. EBI Port Mode 
Mode Ports Used by EBI Module 

Two-port operation Port H and J 

Three-port operation Port H, J, and K 

Four-port operation Port H, J, K, and L 

2.1.1 Two-port Interface 

The two-port mode only allows for SRAM LPC (Low Pin Count) operation. SRAM LPC 
usually involves SRAM devices with internal latches. However, ordinary SRAM 
devices can be used with external latches. 

With SRAM LPC, Port J is used for address and data, while Port H is used for control 
signals. The connections are shown in Figure 2-1 below. 

The LPC Mode bitfield (LPCMODE) in the EBI Control register (CTRL) selects whether 
ALE2 should be used or not. Enabling ALE2 means that 16-bit addresses are used. 

Figure 2-1. 8- and 16-bit address bus in two-port SRAM LPC mode 
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2.1.2 Three-port Interface 

The three-port mode allows for ordinary SRAM and SDRAM connections in addition 
to SRAM LPC. SRAM and SRAM LPC can be used together, but SDRAM can only be 
used alone in three-port mode. In order to use SDRAM together with other memory 
types, the EBI module must be in four-port mode. 
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2.1.2.1 Three-port SRAM LPC 

For SRAM LPC, the connections are similar to two-port mode with the addition of Port 
K used for bit 8 to 15 of the address. The connections for three-port SRAM LPC are 
shown in Figure 2-2 below. 

If the ALE2 line is enabled with the LPC Mode bitfield (LPCMODE), Port K is not used 
and the connections are equal to two-port SRAM LPC, as shown in Figure 2-1 above. 

Figure 2-2. 16-bit address bus in three-port SRAM LPC mode 
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Note that three-port SRAM LPC with only ALE1 enabled is similar to the XRAM 
interface available on many devices in the megaAVR® family. 

2.1.2.2 Three-port SRAM 

Instead of multiplexing address and data on one I/O port as in SRAM LPC mode, 
ordinary SRAM mode uses one dedicated port for data lines and one or more ports 
for multiplexing address lines. For three-port SRAM mode, Port H is used for control 
signals as usual, Port J is used for data only, and Port K is used for multiplexing 
address lines. 

The SRAM Mode bitfield (SRMODE) in the EBI Control register (CTRL) select whether 
ALE2 should be used or not. Enabling ALE2 means that 24-bit addresses are used. 

 3
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Figure 2-3. 16- and 24-bit address bus in three-port SRAM mode 
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2.1.2.3 Three-port SDRAM 

When SDRAM is enabled in three-port mode, neither SRAM nor SRAM LPC is 
supported. There are no spare pins for the Chip Select control signals on the EBI 
ports.  

The SDRAM Data Width bitfield (SDDATAW) in the EBI Control register (CTRL) selects 
between 4-bit and 8-bit SDRAM data width, however only 4-bit SDRAM data width is 
supported in three-port mode. 

The connections for SDRAM in three-port mode are shown in Figure 2-4 below. 

Figure 2-4. Four-bit SDRAM with three-port configuration 
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2.1.3 Four-port Interface 

The four-port mode allows for 8-bit SDRAM operation and SDRAM together with 
SRAM and SRAM LPC. Of course, SRAM and SRAM LPC operation without SDRAM 
is also supported in four-port mode. 

Note that the connections for SRAM LPC and SRAM are slightly different if SDRAM is 
enabled.   

2.1.3.1 Four-port SRAM LPC 

For SRAM LPC, the connections are similar to three-port mode. SRAM LPC does not 
make use of the fourth port. 

8058A-AVR-02/08 
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2.1.3.2 Four-port SRAM 

Compared to three-port SRAM operation, four-port SRAM removes the need for the 
ALE1 line. Instead, the second byte of the address is moved to the fourth port, Port L. 
If only 16-bit addresses are used, there is no need for an address latch. However, the 
ALE2 line can be used to multiplex the third address byte on Port K, similar to three-
port operation. 

The connections, with optional use of ALE2, are shown in Figure 2-5 below. What is 
not shown in the figure is that if the ALE2 line is not used, address lines A16 and A17 
are available from Port H. This allows for 18-bit addressing without using latches. 

Figure 2-5. 16- and 24-bit address bus in four-port SRAM mode 
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2.1.3.3 Four-port SDRAM 

Compared to three-port SDRAM operation, four-port SDRAM supports simultaneous 
operation of SRAM and SRAM LPC. When configured in four-port SDRAM mode, the 
EBI interface places the Chip Select lines on the upper four bits of Port L.  

The connections for eight-bit SDRAM are shown in Figure 2-6 below. Compared to 
four-bit SDRAM, Port J now holds all eight bits of data while the upper four address 
bits are moved to Port L together with the Chip Select lines. 
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Figure 2-6. 8-bit SDRAM with four-port configuration 
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If SRAM and SRAM LPC is used together with SDRAM, consider that address lines 
A16 to A19 are moved to the lower four bits of Port L. This applies to all SRAM and 
SRAM LPC configurations that share address lines A16 to A19 with the Chip Select 
lines. Refer to Section 4.1 below for details. 

Note that four-port SRAM is not supported when SDRAM is used. 

2.2 The Chip Select Blocks 
The EBI module has four Chip Select lines (CS0 to CS3) that can be associated with 
separate address ranges. The control registers and functionality associated with each 
Chip Select line are logically grouped into Chip Select Blocks. The four Chip Select 
Blocks are shown in Figure 1-1 on page 1. 

Depending on the memory types you are connecting to the EBI, the Chip Select 
Blocks can be configured for SRAM LPC (Low Pin Count), ordinary SRAM or 
SDRAM.  The blocks can be configured independently, but only the CS3 block 
supports SDRAM. 

The base address associated with each Chip Select Block must be on a 4 Kbyte 
boundary, and decides the location in data memory space where the connected 
memory hardware can be accessed. The Base Address register (BASEADDR) of each 
Chip Select Block holds this address. 

The size of the memory space for each Chip Select Block is selected by the Address 
Space bitfield (ASPACE) in Control Register A (CTRLA). The size can be from 256 
bytes up to 16M bytes. 

Note that if the address space is set to anything larger than 4K bytes, the base 
address must be on a boundary equal to the address space. For instance, with 
1 Mbyte address space for a Chip Select Block, the base address must be on a 
1 Mbyte boundary. 

If the address spaces overlap, the internal memory spaces have priority, followed by 
CS0, CS1, CS2 and then CS3 with least priority. 

8058A-AVR-02/08 
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2.3 I/O-port configuration 
The EBI module does not override I/O-port directions when enabled. The user must 
configure all interface pins as outputs, except the pins used for the data bus. 

Control signals that are active-low, the pin output value should be set to logic one, 
while active-high signals should have the corresponding pin output value set to logic 
zero. Address lines do not care whether the output value is one or zero. 

Chip Select lines should have pull-up resistors to ensure that these are kept high 
during start-up. This ensures that floating control signals during start-up are ignored 
by external modules. In modes where Chip Select lines are not controlled by the EBI 
module (e.g. 3-port SDRAM), General Purpose IO pins should be used to set the 
Chip Select lines low when needed. 

For more information, please refer to the device datasheet or the application note 
“AVR1313: Using the XMEGA I/O-pins and External Interrupts”. 

2.4 Selecting External Latches 
The EBI module was designed to meet the spec for 74AHC series of address latches. 
Refer to datasheet for details for timing requirements. 

2.5 SDRAM Refresh Considerations 
The EBI takes care of refreshing the SDRAM module for us. Since the only Chip 
Select block capable of interfacing SDRAM have the lowest priority, it could happen 
that other memories are being accessed when its time for a new SDRAM refresh. In 
that case, the EBI remembers the missed refresh and refreshes the SDRAM when 
other memory accesses are finished. 

When in sleep mode and the clock to the EBI module is stopped, it is possible to 
enter Self-refresh mode for the SDRAM module. To enable Self-refresh, set the 
SDRAM Self-refresh Enable bit (SDSREN) in Control Register B (CTRLB) for Chip 
Select block 3. Note that it is not possible to access the SDRAM when in Self-refresh 
mode. 

3 Getting Started 
This section walks you through the basic steps for getting up and running with the 
XMEGA EBI. The necessary registers are described along with relevant bit settings. 

Setting up the EBI for SRAM and SDRAM operation is an easy task, and the reader is 
advised to study the code example for details. SDRAM setup requires some more 
though, and a walkthrough is provided below.  

3.1 SDRAM Setup and Initialization 
Task: Setup EBI for SDRAM operation and initialize SDRAM controller. 

• Select three-port or four-port interface with the Interface Mode bitfield (IFMODE) in 
the EBI Control register (CTRL). 

• Configure IO-port directions and values according to Section 2.3 above. 
• Use the SDRAM Data Width bitfield (SDDATAW) in the EBI Control register (CTRL) 

to select 4-bit or 8-bit data. 
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• Use the SDRAM CAS Latency bit (SDCAS) in SDRAM Control Register A 
(SDRAMCTRLA) to select 2 cycles (logic zero) or 3 cycles (logic one) CAS latency. 

• Use the SDRAM Row Bits bit (SDROW) in SDRAM Control Register A 
(SDRAMCTRLA) to select 11-bit (logic zero) or 12-bit  (logic one) row addressing. 

• Use the SDRAM Column Bits bitfield (SDCOL) in SDRAM Control Register A 
(SDRAMCTRLA) to select 8-, 9-, 10- or 11-bit column addressing. 

• Use the bitfields MRDLY, ROWCYCDLY and RPDLY bitfields in SDRAM Control 
Register B (SDRAMCTRLB) and WRDLY, ESRDLY and ROWCOLDLY in SDRAM 
Control Register C (SDRAMCTRLC) to configure various SDRAM interface delays 
given in peripheral clock cycles. 

• Use the SDRAM Refresh Period register (REFRESH) to select SDRAM refresh 
period in peripheral clock cycles. 

• Use the SDRAM Initialization Delay register (INITDLY) to select SDRAM 
initialization delay in peripheral clock cycles. 

• Set the desired SDRAM base address in the Base Address register (BASEADDR) 
for Chip Select Block 3. 

• Set the desired address space using the Address Space bitfield in Control 
Register A (CTRLA) for Chip Select Block 3. 

• Enable SDRAM and start initialization sequence by setting the Memory Mode 
bitfield (MODE) to SDRAM in Control Register A (CTRLA) for Chip Select Block 3. 

 

When initializing SDRAM, it is important to configure all parameters before enabling 
the Chip Select Block in SDRAM mode. The order of setting the parameters 
themselves are not important. 

4 Advanced Features 
This section introduces more advanced features and possibilities with the EBI. In-
depth treatment is outside the scope of this application note and the user is advised 
to study the device datasheet and relevant application notes. 

4.1 Chip Select Lines as Address Lines 
In certain configurations, the Chip Select lines can be used as address lines instead. 
Say, if only Chip Select Block 2 and 3 is used, the Chip Select lines CS0 and CS1 are 
used as address lines A16 and A17 instead. Figure 4-1 below shows the possible 
configurations. 

This feature only applies to configuration where address lines A16 to A19 are not 
already multiplexed on other ports. 

Figure 4-1. Possible combinations of Chip Select lines and address lines 
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The figure shows that if only CS3 is enabled, all four CS lines are used as address 
lines. 
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4.2 Additional Chip Select Lines 
If the four Chip Select lines should not be enough for your application, further address 
decoding can be done externally. 

Say you want to access eight small external peripheral devices, all having 32 internal 
registers or less. Configure the Chip Select Block you want to use with 256-byte 
address space. The resulting 8-bit address is divided into two parts, the upper three 
bits selects one of the eight external peripherals, while the lower five bits addresses 
one out of 32 internal registers. Figure 4-2 below shows an example for such an 
implementation. 

Figure 4-2. Example of three address bits decoded to eight external Chip Select lines 
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5 Driver Implementation 
This application note includes a source code package with a basic EBI driver 
implemented in C. It is written for the IAR Embedded Workbench® compiler. 

Note that this EBI driver is not intended for use with high-performance code. It is 
designed as a library to get started with the EBI. For timing and code space critical 
application development, you should access the EBI registers directly. Please refer to 
the driver source code and device datasheet for more details. 

5.1 Files 
The source code package consists of four files: 

• ebi_driver.c – EBI driver source file 
• ebi_driver.h – EBI driver header file 
• ebi_sram_example.c – Example code using the driver with SRAM 
 ebi_sdram_example.c – Example code using the driver with SDRAM 
 
For a complete overview of the available driver interface functions and their use, 
please refer to the source code documentation. 

5.2 Doxygen Documentation 
All source code is prepared for automatic documentation generation using Doxygen. 
Doxygen is a tool for generating documentation from source code by analyzing the 
source code and using special keywords. For more details about Doxygen please visit 
http://sourceforge.net/projects/doxygen. Precompiled Doxygen documentation is also 
supplied with the source code accompanying this application note, available from the 
readme.html file in the source code folder. 
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